Chromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
Authors
Abstract:
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and certain derivative split graphs.
similar resources
Chromatic polynomials of some nanostars
Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most colours, which is for a fixed graph G , a polynomial in , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.
full textChromatic polynomials and toroidal graphs
The chromatic polynomials of some families of quadrangulations of the torus can be found explicitly. The method, known as ‘bracelet theory’ is based on a decomposition in terms of representations of the symmetric group. The results are particularly appropriate for studying the limit curves of the chromatic roots of these families. In this paper these techniques are applied to a family of quadra...
full textChromatic polynomials of random graphs
Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009New J. Phys. 11 023001) nowmake it possible to compute chromatic polynomia...
full textInjective Chromatic Sum and Injective Chromatic Polynomials of Graphs
The injective chromatic number χi(G) [5] of a graph G is the minimum number of colors needed to color the vertices of G such that two vertices with a common neighbor are assigned distinct colors. In this paper we define injective chromatic sum and injective strength of a graph and obtain the injective chromatic sum of complete graph, paths, cycles, wheel graph and complete bipartite graph. We a...
full textChromatic and tension polynomials of graphs
Abstract. This is the first one of a series of papers on association of orientations, lattice polytopes, and abelian group arrangements to graphs. The purpose is to interpret the integral and modular tension polynomials of graphs at zero and negative integers. The whole exposition is put under the framework of subgroup arrangements and the application of Ehrhart polynomials. Such viewpoint lead...
full textThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
full textMy Resources
Journal title
volume 14 issue 2
pages 173- 184
publication date 2019-10
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023